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; ABSTRACT

/ In the problem of selecting the best of k populations, a natural rule

K
e is to select the population corresponding to the largest sample value of an !
™. appropriate statistic. As a retrospective analysis, a lower confidence :
:Z: bound on the probability of a correct selection is derived when the probability '
>
o density function has the monotone likelihood ratio property under the location

- parameter setting. The result is applied to the normal populations with

both known and unknown common variance. Tables to implement the confidence ) p
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A Lower Confidence Bound on the Probability

of a Correct Selection

by
Woo-Chul Kim

Seoul National University and Purdue University

1. INTRODUCTION

Consider independent observations xij from each of k populations with
cdf's G(x-ei), i=1,2,...,k, j=1,2,...,n. The experimenter wishes to select
the "best" population associated with the largest parameter 0. For this
purpose, we choose an appropriate statistic Yi=Y(Xi],...,Xin) with cdf
Fn(y-ei) and use the natural selection rule which selects the population
corresponding to the largest Yi as the best.

For this selection problem, .Bechhofer (1954) introduced the indifference
zone approach in which we determine the sample size n, prior to the experiment,
to control the probability of a correct selection (PCS)

k-1
PCS = [~ 1

~e =]

Fn(Y+e[k]-e[i]) d Fn(y) (1.1)

where 9[1] < 6[2] 5,..5_e[k] are the ordered parameters. In controlling the
PCS, we need to specify a preference zone where the largest two parameters
ork] and ®[k-1] are far apart. This indifference zone approach is clearly

formulated from the point of view of designing experiment.

Recently retrospective analyses regarding the PCS have been studied by

;4 Gibbons, Olkin, and Sobel (1977), Anderson, Bishop, and Dudewicz (1977),




Olkin, Sobel, and Tong (1982), and Faltin and McCulloch (1983) among others.

Most of these studies have dealt with the point estimation of the PCS.

Gibbons, Olkin, and Sobel (1977) and Olkin, Sobel, and Tong (1982)
have presented interval estimates of PCS. However the coverage probabilities
of such interval estimates have not be discussed. Thus they can not be
interpreted as confidence interval estimates (see Bechhofer 1980, p. 753).
In the case of normal populations, Anderson, Bishop, and Dudewicz (1977) have
given a lower confidence bound on PCS. The quantile unbiased estimator in
Faltin (1980) can also be regarded as a lower confidence bound on PCS. However,
it is restricted to the special case of k=2 populations.

This article presents a lower confidence bound on PCS when the pdf
foly-8) of Fn(y-e) has the monotone likelihood ratio (MLR) in y and 6. From
this result, we obtain a lower confidence bound on PCS in the case of normal
populations with both known and unknown common variance. The obtained lower
confidence bound is sharper than that of Anderson, Bishop, and Dudewicz (1977),
and reduces to that of Faltin (1980) in the special case of k=2 populations.

Tables to implement the lower confidence bound as well as an illustrative

example are given.

2. A LOWER CONFIDENCE BOUND ON PCS

It can be easily seen from the inquality

pcs > [ FX1(y + °rk] - o[k-17) 4 FO) (2.1)

that a (conservative) lower confidence bound on PCS can be obtained from a

lower confidence bound on e[k] - °[k-]]' Thus we begin with constructing a
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lower confidence bound on e[k]-e[k_]]. To do this, let Y(1)§X(2)5,..5X(k)
o denote the ordered statistics of Y1,Y2,...,Yk, and let f(y) denote the pdf
- of F. Note that the dependence of F and f on n is suppressed notationally.
. We first state a lemma which is a generalization of a result in Anderson,

T Bishop, and Dudewicz (1977).

Lemma 1. Assume that log f(y) is concave. Then for any fixed c¢>0,

PQ[Y(k)'Y(k-])>C] is non-increasing in e[]].

Proof. By semmetry we may assume By S.ee2 ek. Then, for any c>0, we have

. k k

o PLY, \-Y >c]= §J [° n Fly*e,-e.-c) f(y) dy.

3 L S A
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1
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By the equivalence between the assumption and the MLR of f(y-6) in y and &, :
the expression in the brackets is non-positive. Hence the result follows. 3
To define a lower confidence bound, let :

A

}

: H(x) = [~ F(x+y) f(y) dy
-“ -0 :
4 y
denote the cdf of (Y,-8,) - (Y,-0,) and let x denote the upper a/2 quantile !

11 272 a/2 ¢

! of H(x) for O<a<l. Note that H(x) is symmetric and x,/2°0- For a given ;
: 0<a<1 and for t 2 X 190 We define a non-negative function La(t) = L(t) by ,i
' ¥

- H(L(t)-t) + H(-L(t)-t) = «. (2.2)

} §.
The existence of such a function L(t) for t 3_xa/2 is proved in the Appendix "

N under the assumption in Lemma 1. Also it can be easily observed that the :
z; function L(t) is strictly increasing for t 2 X, /90 {
> We present an exact 100(1-a)% lower confidence bound on e[k]-e[k_]] in -
; the following theorem. )
) Theorem 1. Assume that log f(y) is concave. Then }
i

.

\

12f Pg[e[k]'e[k_]] > L(Y(k)-Y(k_”)] £ Y-a (2.3) :é

:

where L(t) is defined by (2.2) for t 2 X2 and 0 for Ofxgxa/z. "
- At
i Proof. For any fixed ork] and O[k-1]° let 4 = ®[k]"°[k-1]" Then it ;
. A
. follows from Lemma 1 that for all ¢ Q
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P.?,[A > L(Y(k)°Y(k-1))]
= -] -
-1
> PQFL (8) 2 Ypeq¥rean3ld
where L'](O) is taken as x ,,. Note that the equality can be attained
a/2
when or1] = [z =-v+° Ork-23 - Furthermore, for any value of A, we
have
-1
PQ,[L (a) > lY[k] Y[k-'l]“
= 1 - (H(a-L"1(a)) + H(-a-L"T(a)))
=1-a
which completes the proof.
A simple but useful corollary to Theorem 1 is the following.
Corollary 1. Under the assumption of Theorem 1, we have
P@[PCS 2P 121-0 for all o
where
5 = k-1
P {: PR L (Y ()Y ey D) @ FY). (2.4)
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' The lower confidence bounds in (2.3) and (2.4) become trivial when

:% Y(k)'Y(k-1) < Xy/20 that is, when the data do not show significant evidence

'j for e[k] > e[k_]]. In fact, it can be easily shown that any lower confidence

. bound for e[k]-e[k_]], which is a non-negative and non-decreasing function

-

:: of Y(k)'Y(k-l)’ becomes trivial in such a case.

b 3. NORMAL POPULATIONS WITH A COMMON VARIANCE

g LetXij be independent observations from N(ui.oz). i=1,...,k, j=1,...,n,

: where the common variance 02>0 may be either known or unknown. The best

:? population is the one associated with k) = max s, and we select the

2 1<i<k

& population corresponding to the largest sample mean 7} as the best. The

éﬂ probability of a correct selection is

™ .

:-: PCS = {w 1'2 ¢(x+ n(}J[k]-U[i])/O)d‘P(X) (3.])

-~ where M[1] See-S Mg 2re the ordered ui's and ¢ is the standard normal cdf.

In the case of known variance, by taking Y, = /n Y}kxand 0; = /n ug/o in

iﬁ Theorem 1 and Corollary 1, we can make the following statement with 100 (1-a)%

i confidence;

- o kel - - 4
a PCS > j.’w ¢ [x+/2h(/ﬁ(x(k)-x(k_1))//2 o)] de(x) (3.2) !
-).: -1
W _ - X
:§ where X(]) 5...§_X(k) are the ordered sample means and the non-negative function
= h(t) is defined by "
Ao

4 .
4 -
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N #(h(t)-t) + ¢(-h(t)-t) = o (3.3)

[

N for t Z-Za/Z and h(t) =0 for0<t< LIPE Here, zm/2 is the upper o/2

«

quantile of the standard normal distribution.

'3 When the common variance 02 is unknown, let 52 denote the pooled sample

‘: variance. Note that vSZ/c2 has a x2 distribution with v=k(n-1) degrees of

)

’ freedom. Since 52 is independent of i&,...,Yk, this case can be treated

} similarly by considering the conditional coverage probability given 52 = 52

:E and by taking Y; = /n X,/0, 6, = /n u;/s. Therefore we omit the derivation

%? for the following confidence statement; With 100 (1-a)% confidence, we have

(“[k]-“[k-l])/o > /2/n hv (/n (x(k)-x(k-]))//? S)
o k=1 -

i; where the non-negative function hv(t) is given by
b

#i IO [o(hv(t)-tu) + ¢(-hv(t)-tu)] d Qv(u) =q (3.5)

s

5; for t 3.ta/2(v) and hv(t) = 0 for Ogtgxalz(v). Here, ta/Z(“) is the upper
;; a/2 quantile of the t-distribution with \ degrees of freedom and Qv(u) is ﬁ
- <
- the cdf of y//v. .
!" The values of the function hv(t) are given in Tables 1 and 2 for o = 0.05, f
- la
o 0.70 and for selected values of v and t > ta/Z(v). Note that h (t) = h(t) for a
:i v=wo, Details of the computational techniques are given in the Appendix. As
; can be seen from Figure 1, our computations have indicated that the function
b
XY
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hv(t) becomes nearly linear for moderately large values of t-ta/z(v). For
t values larger than those in Tables 1 and 2, the values of hv(t) satisfying
(3.5) can be found numerically or be approximated by linear extrapolation.

Especially in the case of known variance (v==~), it can be easily shown that

112 (h(t)-t) = -z, t - zon/2 < h(t) <t - z, for t > 2 /2 (3.6)

It follows from the lower bound on h(t) in (3.6) that the lower confidence
bound in (3.2) is sharper than the one in Anderson, Bishop, and Dudewicz (1977).
It can also be easily observed that in the special case of k=2 it reduces to

the one in Faltin (1980).

——— —— — —— —— — — — —

4. AN EXAMPLE

For illustration purpose, we consider an example given by Kleijnen, Naylor,
and Seaks (1972), in which a firm that produces a single product from a multi-
stage production process is interested in selecting the one most profitable
production plan among k=5 possible plans. They run simulation experiments with
a sample of size n=50 for each plan and assume that the profit using each
plan has a normal distribution with a common unknown variance. The data are

as follows:

Ak L ®_ . . 4"




T LR SR mah Bl AERA e B A s et s o bt Snd Mt & g SR ok R o pien atl el et vl i Evul adil- aih -abid -t A i - aeuiaind ik i S Rk S i s N e~ S e |

Plan i Mean profit Standard deviation
1 2976.40 175.83
2 2992.30 202.20
3 2675.20 250.51
4 3265.30 221.81
5 3131.90 277.04

From the given data, plan 4 yields the largest sample mean and is selected
as the most profitable plan. A reasonable question is: what kind of confidence
statement can be made regarding the PCS? First, we observe that the pooled
sample standard deviation is s = 228.26 with v = 5(49) = 245 degrees of
freedom and t = /n (;(5)';k4))/J§ s = 2.92. Choosing « = .10, we find
V2 hv(t) = 2.32 by (3.6). Using Table A.2 in Gibbons, Olkin, and Sobel (1977)

for the integral value in (3.4), we can state with 90% confidence that PCS > .856. !

5. CONCLUDING REMARKS
The results in Section 2 are derived for location parameter families.

However, similar results for scale parameter families can be obtained. For the

problem of selecting the population with the largest scale parameter Bys the PCS
in (1.1) is replaced by

k=1

Pes = Jo |1y Flop/osp) ¢ FO) (5.1)

where F(y/ei) is the cdf of an appropriate statistic Yizp. Similar analysis
yields, under the assumption of MLR of the pdf % f(%) in y and 6, .hat the
100(1-~)% lower confidence bound in (2.4) can be replaced by

~

BL= Jg PNy LY g/ Y (gaqy)) 4 F O (5.2)
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; The function L(t) in (5.2) is defined by
R~
Rt
% HIL(t)/t) + H((tL(E) ) = o
. .
;{ for t > X0/2 and L(t) =1 for0<tc< xm/2 where H(x) is the cdf of Y]/Y2
%ﬁ for 8y = 8, and Xo/2 is the upper o/2 quantile of H(x). Also, obvious
o modifications can be made for the problem of selecting the population with
;J ) the smaliest scale parameter. Such modifications can be useful, for example,
N
v for the normal variances problem.
:? As a final remark, we point out that the lower confidence bound in (2.4)
%; is conservative due to the use of the inequality (2.1). To obtain an exact
Tower confidence bound on PCS, one needs simultaneous lower confidence
-éf bounds on k1o’ i=1,2,...,k-1 which the author was unable to obtain.
APPENDIX
To show the existence of a non-negative function L(t) satisfying (2.2),
_ we assume that log f(y) is concave and let wt(a) = H(a-t) + H(-a-t) for fixed
;: t 2 X /0 Then
l:-:
o _d_ = H'(a- - H
da wt(a) H'(a-t) - H'(a+t)
% .
oy = [7 [f(y-t)-f(y+t)] f(y-a)dy (A.1)
N -
.
= where H'(x) is the pdf of H(x).

Note that the expression in the brackets in (A.1) changes sign once from
¥ - to + as y varies from == to +=. Therefore, by the sign diminishing property
5&. of MLR (see, for example, Lehmann 1954, p. 74), é%-wt(a) changes sign at most
:::
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once from - to + as a varies from - to +=. Furthermore, by the symmetry of
H'(t), é% v,(a) = 0 for a = 0. Thus wt(a) is strictly increasing in a > 0.
Also it can be observed that for fixed t > x /5, ¥, (0) = 2H(-t) < o and
wt(a) + 1 as a » ». Hence L(t) can be defined by (2.2).

For constructing Tables 1 and 2, numerical evaluation of the integral
in (3.5) was done via IMSL's subroutine MDTN. In the case of a known variance
(v==), MDNOR was used. The value of hv(t) was found numerically by finding a
root of (3.3) or (3.5) via the modified regula falsi method with the accuracy

up to 10'5. Then, the values of hv(t) were rounded.
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Table 1. Values of hv(t) for a=.05.

WV Y Y Y I I W T W e Se

‘::‘ t - tO./Z (V)
‘l
v .05 .10 .15 .20 .25 .30 .35 .40 .45 .50
tj S| .198 .282 .348 .405 .456 .502 .546 .588 .628 .666
a 6| .203 .290 .358 .416 .469 .517 .563 .606 .648 .668
3 7| .207 .295 .364 .424 .478 .S528 .575 .619 .663 704
- 8} .210 .299 .36% .430 .485 .536 .S84 .630 .674 717
i 9| .212 .302 .373 .435 .490 .542 .S591 .638 .8683 .726
" 10 .214 .305 .376 .439 .495 .547 .597 .644 .690 .734
11| .215 ,307 .379 .442 .498 .S55% .601 .649 .696 741
12| .216 .308 .381 .444 .501 .555 605 .654 .700 746
13| .217 .310 .383 .446 .S504 .S58 .609 .657 .705 751
14| .218 .311 .384 .448 .506 .560 .611 .661 .708 .755
15§ .219 .312 .386 .450 .508 .562 .614 .664 .711 .758
16 | .219 .313 .387 .451 .510 .564 .616 .666 .714 . 761
17 | .220 .314 .388 .453 .511 .566 .618 .668 .717 764
t8 | .220 .314 .389 .454 .513 .568 .620 .670 .719 .77
19 | .221 .315 .390 .456 .S514 .569 .621 .672 .721 769
20| .221 .316 .390 .45 .S15 .870 .623 .674 .723 .77
30 .223 .319 .395 .461 .S22 .S578 .632 .684 .734 .783
60 | .226 .323 .400 .467 .528 .586 .641 .694 .746 796
120 | .227 .325 .402 .470 .S532 .590 .645 .699 .752 .803
w | .228 .326 .404 .473 .S535 .594 .650 .704 .758 .810
-t v
t-t, (v)
v .60 .70 .80 .90 1.0 1.1 1.2 1.3 1.4 1.8
5| .740 .810 .876 .944 1.009 1.072 1.134 1.196 1.256 1.317
61 .766 .840 .912 .982 1.051 1.118 1.185 1.251 1.317 1.381
7| .785 .862 .937 1.010 1.082 1.153 1.224 1.293 1.3562 1.431
8] .799 .879 .956 1.032 1.107 1.181 1.254 1.327 1.399 1.470
9| .811 .892 .972 1.050 1.127 1.203 1.279 1.354 1.428 1.502
10| .820 .903 .985 1.065 1.144 1.222 1.299 1.376 1.453 1.529
11} .828 .212 .995 1.077 1.157 1.237 1.316 1.395 1.473 1.551
121 .834 .920 1.004 1.087 1.169 1.250 1.331 1.411 1.491 1.570
13 ] .840 .927 1.012 1.096 1.179 1.262 1.343 1.425 1.506 1.587
14§ .845 ,933 1.019 1.104 1.188 1.271 1.354 1.437 1.519 1.601
15| .849 .938 1.025 1.111 1.196 1.280 1.364 1.448 1.531 1.614
. 16 | .853 .942 1.030 1.117 1.202 1.288 1.373 1.457 1.541 1.625
.t 17 ] .856 .946 1.035 1.122 1.209 1.295 1.380 1.466 1.551 1.635
- 18| .859 .950 1.039 1.927 1.214 1.301 1.387 1.473 1.559 1.644
;. 19 ] .862 .953 1.042 1.131 1.219 1.306 1.393 1.480 1.566 1.652
Fj 20 | .864 956 1.046 1.135 1.223 1.311 1.399 1.486 1.573 1.660
. 30| .880 .974 1.068 1.160 1.252 1.344 1.436 1.527 1.618 1.708
A 60 | .896 .994 1.091 1.187 1.283 1.379 1.474 1.570 1.665 1.760
= 120 | .904 1.004 1.102 1.201 1.299 1.397 1.494 1.592 1.690 1.787
. © 1 ,913 1.014 1.115 1.215 1.315 1.415 1.515 1.615 1.715 1.815
‘-'_.
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Table 2. Values of hv(t) for a=,10.

AR I R ARG RA T,

.

R Y
OCDET AWK N

3
(e}

t - ta/z (V) B
vi .08 .10 .15 .20 .25 .30 .35 .40 .45 .50
5| .224 .318 .392 .455 .512 .564 .613 .660 .704 .747
6 | 228 .324 .400 .464 .522 .576 .626 .674 .720 .765
2| (231 .329 405 .471 .530 .54 .636 .685 .732 .777
8| .233 .332 .409 .475 .535 .591 .643 .693 .740 .787
9| .235 .334 .412 .478 .540 .596 .648 .699 .747 .794
10 | .236 .336 .415 .482 .543 .599 .653 .704 .753 .800
t1 | 1237 .338 .a417 .485 .546 .603 .656 .708 .757 .805
12 1 .238 .339 .418 .487 .548 .605 .659 .711 .761 .809
13 ! 239 .30 .420 .488 .S550 .608 .662 .714 .764 .813
14 | .280 .341 .421 .490 .S52 .610 .664 .716 .767 .B16
15 | .240 .342 .422 .491 .553 .611 .666 .718 .769 .818
16 | .241 .343 .423 .492 .SS5 .613 .668 .720 .771 .820
17 | 241 .343 .42a .493 .S56 .614 .669 .722 .773 .823
18 | 242 .344 .424 .49a .S57 .615 .670 .723 .774 .824
1o | 242 .3a5 .425 .495 .S58 .616 .671 .725 .776 .826
20 | .242 .345 .426 .495 .S58 .617 .673 .726 .777 .827
30 | .244 .348 .429 .500 .563 .623 .679 .733 .786 .837
60 | .246 .351 .433 .504 .569 .629 .686 .741 .794 846
120 | 247 352 .435 .506 .571 .632 .689 .744 .798 851
w | (248 .354 .436 .508 .574 .635 .693 .748 .802 .856
t - ta/z (\))
v| .60 .70 .80 .90 1.0 1.1 1.2 1.3 1.4 1.5
5| .830 .908 .984 1.058 1.131 1.202 1.272 1.342 1.410 1.479
6| .850 .932 1.011 1.089 1.165 1.240 1.314 1.387 1.460 1.532
7| 865 .949 1.031 1.111 1.190 1.268 1.345 1.421 1.497 1.572
8| 876 .962 1.046 1.128 1.209 1.289 1.369 1.448 1.526 1.604
o | 885 .972 1.058 1.142 1.225 1.307 1.388 1.469 1.549 1.629
10 | .892 .981 1.068 1.153 1.237 1.321 1.404 1,486 1.568 1.650
11 | [898 .988 1.076 1.162 1.248 1.333 1.417 1.501 1.584 1.667
12 | .903 .994 1.083 1.170 1.257 1.343 1.428 1.513 1.598 1.682
13 | [907 .999 1.088 1.177 1.264 1.351 1.438 1.524 1.609 1.694
14 | 911 1.003 1.093 1.183 1.271 1.359 1.446 1.533 1.619 1.705
‘ 15 | .914 1.007 1.098 1.188 1.277 1.365 1.453 1.541 1.628 1.715
16 | 917 1.010 1.102 1.192 1.282 1.371 1.460 1.548 1.636 1.724
17 | 919 1.013 1.105 1.196 1.286 1.376 1.465 1.554 1.643 1.731
- 18 | 1921 1.015 1.108 1.200 1.290 1.381 1.470 1.560 1.649 1.738
19 | 923 1.018 1.111 1.203 1.294 1.385 1.475 1.565 1.655 1.744
20 | .925 1.020 1.113 1.206 1.297 1.388 1.479 1.570 1.660 1.750
30 | 1936 1.033 1.129 1.224 1.319 1.413 1.506 1.600 1.693 1.786
60 | .948 1.047 1.146 1.243 1.340 1.437 1.534 1.631 1.727 1.824
120 | (954 1.054 1.154 1.253 1.352 1.450 1.549 1.647 1.745 1.843
o | 959 1.061 1.162 1.263 1.363 1.463 1.563 1.663 1.763 1.863
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